ECS 20 - Fall 2021 - P. Rogaway

Numbers and Induction
https://www.cs.wm.edu/~tadavis/cs243/ch05s.pdf

Number Theory

1. constant symbol: 0
2. predicate symbol: <
3. function symbol: $\quad S$ (1-ary) (successor function)

+ (2-ary)
- (2-ary)
E (2-ary) omit because it's not part of PA?
Always add equality ($=$), which is reflexive, symmetric, transitive.
Already rich enough to make powerful statements in number theory.
Eg: Fermat's Last Theorem: no three positive integers a, b, and c satisfy the equation $a^{n}+b^{n}=c^{n}$ for any integer value of n greater than 2 :

$$
(\forall a)(\forall b)(\forall c)(\forall n)(a E n+b E n=c E n \rightarrow n>S(S(0)))
$$

(Show how to define $>$ using $<,=$, and negation). Or, similarly, write Goldbach's Conjecture in this language of number theory: that every even number more than 2 is the sum of two primes.

PA axioms from where? Now finding
http://www.cs.toronto.edu/~sacook/csc438h/notes/page96.pdf, which doesn't include 7, 8...

Axioms of arithmetic ("Peano arithmetic")(Giuseppe Peano, 1889)

1. $(\forall x)(S(x) \neq 0)$
2. $(\forall x)(\forall y)(S(x)=S(y) \rightarrow x=y)$
3. $(\forall x)(x+0=x)$
4. $(\forall x)(\forall y)(x+S(y)=S(x+y))$
5. $(\forall x)(x \cdot 0=0)$
6. $(\forall x)(\forall y)(x \cdot S(y)=x \cdot y+x)$
7. $(\forall x)(\forall y))(\forall c)(\mathrm{x}<\mathrm{y} \rightarrow x+c \leq y+c)$
8. $(\forall x)(\forall y))(\forall c)(\mathrm{x}<\mathrm{y} \rightarrow x \cdot c \leq y \cdot c)$
9. For all predicates P

$$
(P(0) \wedge(\forall n)(P(n) \rightarrow P(n+1)) \quad \rightarrow \quad \wedge \quad(\forall n)(P(n))
$$

Not a $1^{\text {st }}$ order property

Alternatively: If a set contains zero and the successor of every number is in the set, then the set contains the natural numbers. This form does not seem as directly useful.

Principle of mathematical induction Different statement

To prove a proposition $P(n)$ for all integers $n \geq n_{0}$:

1) Prove $P\left(n_{0}\right) \quad$ (Basis)
2) Prove that $P(n) \rightarrow P(n+1)$ for all $n>n_{0}$ (Inductive step)
(Inductive assumption)
The above sounds slightly more general (because I let you start at n_{0}), but easily seen to be equivalent.

Also equivalent: "strong" form of induction:
To prove a proposition $P(n)$ for all integers $n \geq n_{0}$:

1) Prove $P\left(n_{0}\right)$ (Basis)
2) Prove that $(P(1) \wedge \ldots \wedge P(n)) \rightarrow P(n+1)$ for all $n>n_{0}$ (inductive step)

Again equivalent. Sometimes easier to apply. The stronger inductive assumption may make it easier to get the conclusion.

EXAMPLE 0: Prove that the sum of the first n integers $n(n+1) / 2$. Do this in two ways, either: (a) pictorially; (b) by induction. But where does the formula come from? Options: (i) write a table; (ii) use a definite integral to help make a guess; (iii) solve a system of equations using values from table.

EXAMPLE 1: Prove that the sum of the odd integers 2 .. $2 n-1$ is n^{2} $1+3+\ldots+(2 n-1)=n^{2}$.

Basis: n=1, check

Inductive step:

$$
\begin{aligned}
1+3+\ldots(2 n-3) & =(n-1)^{2} \\
+2 n-1 & =\quad+2 n-1 \\
& =n^{2}-2 n+1+2 n-1=1 \\
& =n^{2}
\end{aligned}
$$

EXAMPLE 2: Use induction to prove that $n^{2}+n$ is always even (divisible by 2).

Basis: n=0: fine.
Inductive step: Assume that the statement is true for $n=k$. Thus, $k^{2}+k$ is even. That is, $k^{2}+k=2 j$ for some integer j. Now what about $(k+1)^{2}+(k+1)-$ is it necessarily even?? Expanding out, this expression is

$$
k^{2}+2 k+1+k+1=k^{2}+3 k+2=k^{2}+k+2 k+2
$$

$$
=2 j+2 k+2=2(j+k+1)
$$

so it is even
Now, write $\mathrm{k} 2+\mathrm{k}\left\{\mathrm{k}^{\wedge} 2\right\}+\mathrm{kk} 2+\mathrm{k}$ as part of an equation which denotes that it is divisible by 222.

EXAMPLE 3. Sam's Dept. Store sells envelopes in packages of 5 and 12. Prove that, for any $n \geq 44$, the store can sell you exactly n envelopes. [GP, p.147]

Basis: $44=2(12)+4(5)$

$$
45=9(5)
$$

$$
46=3(12)+2(5)
$$

?...?
SUPPOSE: It is possible to buy n envelopes for some $n \geq 44$.
SHOW: It is possible to buy $n+1$ envelopes
$X \quad X \quad X X \quad X \quad x \quad x \quad x \quad x X \quad x \quad x \quad x \quad X X \quad x \quad X \quad X X X X X X X X X X X X X X X X$ 123456789012345678901234567890123456789012345678901234567890 $\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

- If purchasing at least 7 packets of 5: trade in seven packets of five for three packets of 12 :

$$
7(5) \rightarrow 3(12)
$$

$$
35 \quad 36
$$

- If purchasing fewer than 7 packets of 5: i.e., purchasing at most 6 packets of 5, so at most $\mathbf{3 0}$ of the envelopes are in packets of 5 ; so what remains are $\geq 44-30=14$ envelopes being bought in packets of 12 , so ≥ 2 packets of twelve. So take 2 of the packets of 12 (i.e., 24 envelopes) and trade them for 5 packets of 5:

2425

EXAMPLE 4: Show that you can tile any "punctured" $2^{n} \times 2^{n}$ grid by triominoes https://undergroundmathematics.org/divisibility-andinduction/triominoes/solution

```
#
## (may be rotated)
```

Illustrate and prove, dividing board in into four $2^{n} \times 2^{n}$ to prove. Puncture the $2^{n+1} \times 2^{n+1}$ grid; tile that one of the four subgrids (by inductive assumption); puncturing three the three near-center center points (for the three $2^{n} \times 2^{n}$ pieces that lacking the puncture); recurse on those three pieces; add one more tromino.

EXAMPLE 5: Fundamental theorem of arithmetic. - Almost verbatim from https://www.cs.wm.edu/~tadavis/cs243/ch05s.pdf An example of "strong" induction".

Claim: if n is an integer greater than 1 , then n can be written as the [unique] product of primes. Solution: Let $P(n)$ be the proposition that n can be written as a product of primes. // Leave uniqueness for later, or omit it.

Basis: $P(2)$ is true since 2 itself is prime.
Inductive step: The inductive hypothesis is $P(j)$ is true for all integers j with $2 \leq j \leq k$. To show that $P(k+1)$ must be true under this assumption. Two cases need to be considered:

- If $k+1$ is prime, then $\mathrm{P}(k+1)$ is true.
- Otherwise, $k+1$ is composite and can be written as the product of two positive integers a and b with $2 \leq a \leq b<k+1$. By the inductive hypothesis a and b can be written as the product of primes and therefore $k+1$ can also be written as the product of those primes. Hence, it has been shown that every integer greater than 1 can be written as the product of primes.

Uniqueness:

Let N be the smallest number that can be written in two different ways as the product of primes. Those two ways can have no prime in common or else we'd divide by it and have a smaller number that could be written in two different ways as the product of primes. Thus

$$
\begin{aligned}
N & =p_{1} p_{2} \ldots p_{m}=q_{1} q_{2} \ldots q_{n} \\
& =p_{1} P=q_{1} Q
\end{aligned}
$$

Where $p_{1}<q_{1}$ and the primes on the left, listed in increasing order, are disjoint from those on the right, also listed in increasing order. Now

$$
\left(q_{1}-p_{1}\right) Q<N
$$

I claim that $\left(q_{1}-p_{1}\right) Q$ is a multiple of p_{1}, namely

$$
p_{1}(P-Q)=\left(q_{1}-p_{1}\right) Q
$$

because

$$
p_{1} P-p_{1} Q=N-p_{1} Q
$$

and

$$
\left(q_{1}-p_{1}\right) Q=q_{1} Q-p_{1} Q=N-p_{1} Q .
$$

By the unique factorization of number less than N we know that p_{1} must occur in the factorization of $\left(q_{1}-p_{1}\right)$ or in the factorization of Q.

- The first is impossible because if p_{1} divides $q_{1}-p_{1}$ then it divides q_{1}, but p_{1} and q_{1} are distinct primes.
- The second is impossible because the factors of Q were bigger than (as well as distinct from) p_{1}
Done.

The fundamental theorem of arithmetic is useful. We routinely like to think of numbers in terms of their prime factorization. Many questions become easier if presented a number in this form. Example:

How many factors does 360 have?
First, write 360 in its prime factorized form:
$360=2^{3} \cdot 3^{2} \cdot 5$
A factor must be of the form 2a 3b 5c where $a \in[0 . .3], b \in[0 . .2], c \in[0 . .1]$. So the number of factors 360 has is $4 \cdot 3 \cdot 2=24$.

If I asked you how many factors $2450250000=2^{4} 3^{4} 5^{6} 11^{2}$ has, you would answer $5 \cdot 5 \cdot 7 \cdot 3=525$

Is 1873215592 a square? No, because you can divide it by 2 three times, but no no more, so the factorization is $2^{3} \cdot M$ where the prime factorization of M has no 2 s in it; and a number is going to be a square iff all the powers of primes in the prime factorization are even.

EXAMPLE 6: Cake cutting

See http://www.cs.berkeley.edu/~daw/teaching/cs70-s08/notes/n8.pdf for a nice writeup

1. If $n=2$, use the cut-and-choose protocol. Otherwise:
2. The first $n-1$ participants divide the cake by recursively invoking this procedure.
3. For $i=1,2, \ldots, n-1$, do:
a) Participant i divides her share into n pieces she considers of equal worth (by her measure).
b) Participant n collects whichever of those n pieces he considers to be worth most (by his measure).

Number of cuts:
$T(n)=T(n-1)+(n-1)^{2}$

1	2	3	4	5	6
0	1	5	14	30	55

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+(\mathrm{n}-1)^{2} \\
& =\mathrm{T}(\mathrm{n}-2)+(\mathrm{n}-1)^{2}+(\mathrm{n}-2)^{2} \\
& =\mathrm{T}(\mathrm{n}-3)+(\mathrm{n}-1)^{2}+(\mathrm{n}-2)^{2}+(\mathrm{n}-3)^{2} \\
& =\mathrm{T}(\mathrm{n}-3)+(\mathrm{n}-1)^{2}+(\mathrm{n}-2)^{2}+(\mathrm{n}-3)^{2} \\
& =1+2^{2}+3^{2}+4^{2}+\ldots+(\mathrm{n}-1)^{2} \\
& \text { approx. Integeral_} 1^{\wedge} \mathrm{n} \text { x2 approx } \mathrm{n}^{3} / 3 \\
\sum_{i=1}^{n} i^{2} & =1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

Prove by induction.

Axioms of arithmetic ("Peano arithmetic")(Giuseppe Peano, 1889)

1. $(\forall x)(S(x) \neq 0)$
2. $(\forall x)(\forall y)(S(x)=S(y) \rightarrow x=y)$
3. $(\forall x)(x+0=x)$
4. $(\forall x)(\forall y)(x+S(y)=S(x+y))$
5. $(\forall x)(x \cdot 0=0)$
6. $(\forall x)(\forall y)(x \cdot S(y)=x \cdot y+x)$
7. $(\forall x)(\forall y))(\forall c)(\mathrm{x}<\mathrm{y} \rightarrow x+c \leq y+c)$
8. $(\forall x)(\forall y))(\forall c)(\mathrm{x}<\mathrm{y} \rightarrow x \cdot c \leq y \cdot c)$
9. For all predicates P

$$
(P(0) \wedge(\forall n)(P(n) \rightarrow P(n+1)) \quad \rightarrow \quad \wedge \quad(\forall n)(P(n))
$$

Not a $1^{\text {st }}$ order property

